skip to main content


Search for: All records

Creators/Authors contains: "Meiklejohn, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present SimplePIR, the fastest single-server private information retrieval scheme known to date. SimplePIR’s security holds under the learning-with-errors assumption. To answer a client’s query, the SimplePIR server performs fewer than one 32-bit multiplication and one 32-bit addition per database byte. SimplePIR achieves 10 GB/s/core server throughput, which approaches the memory bandwidth of the machine and the performance of the fastest two-server private-information-retrieval schemes (which require non-colluding servers). SimplePIR has relatively large communication costs: to make queries to a 1 GB database, the client must download a 121 MB "hint" about the database contents; thereafter, the client may make an unbounded number of queries, each requiring 242 KB of communication. We present a second single-server scheme, DoublePIR, that shrinks the hint to 16 MB at the cost of slightly higher per-query communication (345 KB) and slightly lower throughput (7.4 GB/s/core). Finally, we apply our new private-information-retrieval schemes, together with a novel data structure for approximate set membership, to the task of private auditing in Certificate Transparency. We achieve a strictly stronger notion of privacy than Google Chrome’s current approach with modest communication overheads: 16 MB of download per month, along with 150 bytes per TLS connection. 
    more » « less
  2. null (Ed.)
    We argue that existing security, privacy, and anti-abuse protections fail to address the growing threat of online hate and harassment. In order for our community to understand and address this gap, we propose a taxonomy for reasoning about online hate and harassment. Our taxonomy draws on over 150 interdisciplinary research papers that cover disparate threats ranging from intimate partner violence to coordinated mobs. In the process, we identify seven classes of attacks—such as toxic content and surveillance—that each stem from different attacker capabilities and intents. We also provide longitudinal evidence from a three-year survey that hate and harassment is a pervasive, growing experience for online users, particularly for at-risk communities like young adults and people who identify as LGBTQ+. Responding to each class of hate and harassment requires a unique strategy and we highlight five such potential research directions that ultimately empower individuals, communities, and platforms to do so. 
    more » « less